35-42

A Comparative Study About the Complexity of Some Recursive Algorithms

Alexe Călin Mureșan

Universitatea Petrol-Gaze din Ploiești, Bd. București 39, Ploiești, Catedra de Matematică e-mail: acmuresan@upg-ploiesti.ro

Abstract

The aim of this paper is to offer a comparative study about the costs involved in fundamental recursive algorithms. We present here the "Fast Fourier Transform", the "Karatsuba" method and also a method for evaluating the polynomial using the cost of $\mathbf{x}^n \mathbf{x}^n$ and Stirling formula.

Key words: Fast Fourier Transform, Karatsuba method, Stirling formula

Introduction

Remark 1. The algorithm for ,, *The Fast Fourier Transform*" presented in Theorem 1 is one of the 10 algorithms with the greatest influence on the development and practice of software and engineering in the 20th century, see [1], [2], [3]. In [4] the authors generalized the above result. In this paper we present ,, The Fast Fourier Transform" for evaluating and interpolating the polynomials.

The complexities of this problem is $O(n \log(n))$ or $O(n \log(n) \log \log(n))$ and not $O(n^2)$ as we can see in the naive method. Also we can compute the polynomials into a fixed point using the computation for x^n , where we use the writing for n in 2-base sistem, see [5], [6]. Evaluating the complexities problem, we can find using the "Stirling formula" also the cost $O(n \log(n))$. Then we use "The Fast Fourier Transform" and the "Karatsuba" method for seeing and comparing the complexities costs for multypling the polynomials.

Definition 1. For a given function g(x), $g : R \to R$, we denote by O(g(x)) the set of functions: $O(g(x)) = \{f(x) \mid f : R \to R \text{ and there exists positive constants } c \text{ and } x_0 \in R \text{ such that}$ $0 \le f(x) \le c \cdot g(x) \text{ for all } x \ge x_0 \}$. In this case for every f(x) we denote: O(g(x))=f(x).

Definition 2. For a given function g(x), $g : R \to R$, we denote by $\Theta(g(x))$ the set of functions: $\Theta(g(x)) = \{ f(x) / f : R \to R \text{ and there are the constants } c_1 > 0, c_2 > 0, \text{ and } x_0 \in R \text{ so that}$ for all $x > x_0$ then it is true that $c_1g(x) < f(x) < c_2g(x) \}$. In this case for every f(x) we denote: $\Theta(g(x)) = f(x)$. **Definition 3.** We consider that $f(x) \sim g(x)$ if $f(x) = \Theta(g(x))$ and $\lim_{x \to \infty} \frac{f'(x)}{g(x)} = 1$.

Proposition 1. a) $\left(\frac{n}{e}\right)^n \le n! \le \frac{(n+1)^{n+1}}{e^n}$, b) Stirling's formula: $x! \sim \left(\frac{x}{e}\right)^x \sqrt{2x\pi}$.

See [7], [8] or [9] to References.

Proposition 2. The Complexity of Divide-and-Conquer algorithms

The *recursively algorithms* typically follow a *divide-and-conquer* paradigm for solving a computational problem which involves three levels of the recursion:

A recurrence for the running time of a divide-and-conquer algorithm, T(n) on a problem of size

n is:
$$T(n) = \begin{cases} \theta(1) & \text{if } n \le k, \ k \in R \text{ is given} \\ aT(n/b) + D(n) + C(n) & \text{if } n > k \end{cases}$$

Where we divide the problem into 'a' subproblems, each of them being '1/b' the rise size of the original and we denote by: D(n) the time to *divide* the problem into subproblems, $\Theta(1)$ if $n \le k$, k is a given real constant, the time for *conquer* a subproblem and C(n) the time to *combine* the solutions to the subproblems.

Proof. It is based on three steps of the paradigm. If the problem size is small enough, say $n \le k$ for some constant k, the simplest solution takes constant time, which we will write as $\Theta(1)$. Otherwise, we follow the paradigm and obtain the result.

The Fast Fourier Transform

Definition 4

a) The Fourier *transform* is a method of converting from one representation of a polynomial, by the sequence of *coefficients* of the polynomial, to another where the representations are the sequence of *values* of polynomial at a certain set of points.

b) For a polynomial with the degree n-1 if we take the sequence of *values* of that polynomial in the n^{th} roots of unity we denote the previous method Fast Fourier Transform, *FFT*.

Theorem 1. For evaluating $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} \in C[x]$ using *FFT* we need $O(n \log_2 n)$ multiplications of complex numbers.

Proof. The polynomial $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} \in C[x]$ is known as a sequence of *n* complex numbers of his coefficients: a_0, a_1, \dots, a_{n-1} .

We can extend with additional 0's the length of the array until it becomes a power of 2, $a_0, a_1, ..., a_{n-1}, 0, 0...0$ and then the *FFT* procedure can be considered for a polynomial with degree *n* a power of 2. We suppose now, without losing the generality, that $n = 2^s$, $s \in N^*$. We compute the polynomial values at the n^{th} roots of unity:

$$\xi_i = e^{2\pi i j/n}, \, i \in \{0, 1, \dots n-1\} \text{ where } j = (0,1) \in C$$
(1)

We find the Fourier transform of the given sequence to be the sequence:

$$P(\xi_i) = \sum_{k=0}^{n-1} a_k \xi_i^k = \sum_{k=0}^{n-1} a_k e^{2\pi i k j / n}, \qquad i \in \{0, 1, \dots, n-1\}.$$
 (2)

Then the values of P, a polynomial of degree 2^{s} -1, at the $(2^{s})^{th}$ roots of unity are:

$$P(\xi_i) = \sum_{k=0}^{n-1} a_k e^{2\pi i k j/2^s}, \quad i \in \{0, 1, ..., 2^s - 1\}.$$
(3)

We divide the previous sum into two sums, containing respectively the terms, where k = 2m and those where k = 2m + 1 for natural $m \in \{0, 1, ..., 2^{s-1} - 1\}$. Then, for each $i \in \{0, 1, ..., 2^s - 1\}$ we can write:

$$P(\xi_i) = \sum_{m=0}^{2^{s-1}-1} a_{2m} e^{2\pi i j (2m)/2^s} + \sum_{m=0}^{2^{s-1}-1} a_{2m+1} e^{2\pi i j (2m+1)/2^s},$$
(4)

$$P(\xi_i) = \sum_{m=0}^{2^{s-1}-1} a_{2m} e^{2\pi i m j/2^{s-1}} + e^{\pi i j/2^{s-1}} \sum_{m=0}^{2^{s-1}-1} a_{2m+1} e^{2\pi i m j/2^{s-1}}$$
(5)

We want to compute $P(\xi_i)$ where $\xi_i = e^{2\pi i j/n}$, $i \in \{0, 1, ..., 2^s - 1\}$, that means for 2^s values.

The first sum of the sums that appear in the previous equality is a Fourier transform of the array $a_0, a_2, a_4, ..., a_{2^{s}-2}$, and the second sum is a Fourier transform of $a_1, a_3, a_5, ..., a_{2^{s}-1}$; these sums are defined for only 2^{s-1} values, that means for $m \in \{0, 1, ..., 2^{s-1} - 1\}$

For solving the *FFT* problem we use the previous recursive relation into a recursive program. Let

$$g(i) = \sum_{m=0}^{2^{s-1}-1} a_{2m} e^{2\pi i m j/2^{s-1}}$$
(6)

denote the first sum. Then g(i) is a periodic function of *i*, of period 2^{s-1} , for all integers *i*, because

$$g(i+2^{s-1}) = \sum_{m=0}^{2^{s-1}-1} a_{2m} e^{\left[2\pi m j \left(i+2^{s-1}\right)\right]/2^{s-1}} = \sum_{m=0}^{2^{s-1}-1} a_{2m} e^{2\pi i m j/2^{s-1}} e^{2\pi m j} = g(i)$$
(7)

Now for computing g(i), $i \in \{0, 1, ..., 2^{s} - 1\}$ first we compute g(i), $0 \le i \le 2^{s-1} - 1$ and for some *i* so that $2^{s-1} \le i \le 2^{s} - 1$ we can get that value being equally to $g(i \mod 2^{s-1})$. The Fast Fourier Transform algorithm in recursive form, where *n* is supposing to be $n = 2^{s}$ and using the type *complex array* to denote an array of complex numbers from relation (1) and (2) have the next form. {Be it $a_0, a_1, ..., a_{n-1}$ and $n = 2^s$, we denote $P(\xi_i) = f(i)$ }

function $f(n = 2^s$: integer; $a_0, a_1, \dots, a_{2^s-1}$: complex array): complex array;

if
$$s = 0$$
 then $f[0] := a_0$
else $array1 := \{a_0, a_2, a_4, ..., a_{2^{s}-2}\};$
 $array2 := \{a_1, a_3, a_5, ..., a_{2^{s}-1}\};$
 $\{c_0, c_1, c_2, ..., c_{2^{s^{-1}-1}}\} := f(2^{s^{-1}}, array1);$
 $\{d_0, d_1, d_2, ..., d_{2^{s^{-1}-1}}\} := f(2^{s^{-1}}, array2);$
for $i := 0$ to $2^s - 1$ do
 $t := e^{\pi i/2^{s^{-1}}},$
 $f[i] := c_{i \mod 2^{s^{-1}}} + t \cdot d_{i \mod 2^{s^{-1}}},$

End $\{f\}$.

We study now the complexity of *FFT*. Let T(k) denote the number of multiplications of complex numbers that will be done, for the worst-case running time, if we call *FFT* on an array whose length is 2^k . If k=0, the array is formed by a_0 and T(0)=0. The procedure will be continued until we follow $s = log_2 n$ steps.

Divide: The divide step just splits the middle of the array with length 2^k , the step takes constant time. Thus, D(k) = T(1).

Conquer: We recursively solve two subproblems, each of size 2^{k-1} , which contributes

 $T(k) = 2 \cdot T(k-1)$ to the running time because the call to $f(2^{k-1}, array I)$; costs T(k-1)

multiplications as does the call to $f(2^{k-1}, array2)$.

Combine: In the merge procedure we have:

The cycle 'for i = 0 to n' loop requires $n = 2^k$ more multiplications. Hence $C(k) = 2^k$.

When we add the functions D(k) and C(k) for the *FFT* "conquer" step gives the recurrence for the worst-case running time T(k) of *FFT*:

$$T(k) = \begin{cases} T(0) = 0 \text{ if } k = 0, \\ T(k) = 2T(k-1) + 2^k, \text{ if } k \ge 0. \end{cases}$$
(8)

If we change variables by writing $T(k) = 2^k t_k$, then we find that $t_k = t_{k-1} + 1$, which, together with $t_0 = 0$, implies that $t_k = k$ for all $k \ge 0$, and therefore that $T(k) = k 2^k$.

Now k become $s = log_2 n$ then $T(s) = n \log_2 n$ is the cost of *FFT* for the worst-case running time. Then $O(n \log_2 n)$, running time for large enough inputs, is the cost of *FFT*.

Theorem 2. FFT for Interpolating the Polynomial, or the Inverse Fourier Transform.

For $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} \in C[x]$ if we have the given values $P(\xi_i)$ at the n^{th} roots of unity $\xi_i = e^{2\pi i/n}, i \in \{0, 1, \dots, n-1\}$, then we can recover the coefficient sequence $\{a_0, a_1, \dots, a_{n-1}\}$ to in $O(n \cdot \log_2 n)$ multiplications of complex numbers.

Proof. We know from the last Theorem that if we have a given sequence $\{a_0, a_1, ..., a_{n-1}\}$ with the coefficients of *P* then the Fourier transform of the sequence is:

$$P(\xi_i) = \sum_{k=0}^{n-1} a_k e^{-2\pi i k j / n}, \ i \in \{0, 1, ..., n-1\}.$$
(9)

Conversely, if we have the given values $P(\xi_i)$, $i \in \{0, 1, ..., n-1\}$ then we can recover the coefficient sequence $\{a_0, a_1, ..., a_{n-1}\}$ by the inverse formulas:

$$a_{k} = \frac{1}{n} \sum_{k=0}^{n-1} P(\xi_{i}) e^{-2\pi i k j / n} , i \in \{0, 1, ..., n-1\}.$$
(10)

The cost is obviously equal to the cost of the *FFT* plus a linear number of conjugations and divisions by n so the cost is $O(n \cdot \log_2 n)$.

The Cost for Computing x^n and Evaluating the Polynomials with Stirling Formula

Definition 5. The cost of an algorithm that calculates x^n is given by the number of the multiplications effectuated until we obtain the result; then its cost will be $C(x^n)$.

Proposition 3. We can find out x^n where 'n' has a representation in the 2-base system with the cost $C(x^n)$ where $\log_2 n \le C(x^n) \le 2\log_2 n$ and $C(x^n) = \theta(\log_2 n)$.

We can see [5] and [6].

Proposition 4. The cost C(P(x)) for Evaluating the Polynomial

 $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} \in R[x]$ is computed using only $O(n \log_2 n)$ multiplications of complex numbers.

Proof: We consider the writing cost for Evaluating the Polynomial. represented by the number of multiplications and then: $C(P(x)) = O(\lg_2 n) + O(\lg_2 (n-1)) + ... + O(\lg_2 2) + O(\lg_2 1)$,

$$C(P(x)) = a_n \lg_2 n + a_{n-1} \lg_2 (n-1) + \ldots + a_1 \lg_2 1$$
 where $a_n \in \mathbf{R}$.

Be it

$$\min_{i \in \{1, 2, \dots, n\}} a_i = c; \max_{i \in \{1, 2, \dots, n\}} a_i = C$$
(11)

Then:

$$c \cdot \sum_{i=1}^{n} \lg_{2} i \leq C(x) \leq C \sum_{i=1}^{n} \lg_{2} i \Leftrightarrow c \cdot \lg_{2}(n!) \leq C(x) \leq C \cdot \lg_{2}(n!) \Leftrightarrow$$
$$C(x) = O(\log_{2}(n!)) . \tag{12}$$

By Proposition 1 we have:

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2n\pi} \text{ or } \left(\frac{n}{e}\right)^n \leq n! \leq \frac{\left(n+1\right)^{n+1}}{e^n}.$$
 (13)

Then

$$\log_2(n!) \le \log_2\left(\left(\frac{n+1}{e}\right)^n \cdot (n+1)\right) = n\log_2\left(\frac{n+1}{e}\right) + \log_2\left(n+1\right) \tag{14}$$

and

$$(\exists) n_0 \in N (\exists) c > 0 \text{ so that } \log_2(n!) \le c \cdot \log_2 n, (\forall) n \ge n_0.$$
(15)

Now, because $C(x) = O(\log_2(n!))$, then

$$C(x) = O(n\log_2(n)).$$
⁽¹⁶⁾

Multiplication of Polynomials

Theorem 3. For two complex polynomials P and Q with degree m-1 and n-1 the coefficients of product PQ can be given using the FFT in $O((m + n) \cdot \log_2(m + n))$ arithmetic operations.

Proof: The degree of PQ is m + n-2. Let be $s = \lfloor \log_2(m+n-2) \rfloor + 1$, then $p-1 = 2^s$ is the smallest integer that is a power of 2 and $p-1 \ge m + n-2$.

The given polynomials to the degrees *m* and *n* positive natural numbers, a_{n-1} , $b_{m-1} \neq 0$ can be written:

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + 0 x^n + \dots + 0 x^{p-1} \in C[x],$$

$$Q(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{m-1} x^{m-1} + 0 x^m + \dots + 0 x^{p-1} \in C[x],$$

The array of coefficients of *P* and the array of coefficients of *Q* are considered at the same length *p*. Now we compute the *FFT* at the same $\xi_i = e^{2\pi i j/p}$, $i \in \{0, 1, ..., p-1\}$, p^{ih} roots of unity for the polynomials *P* and *Q*. From Theorem 1 the cost of this computation is

$$O(p \cdot \log_2 p) = O((m + n) \cdot \log_2(m + n)).$$
⁽¹⁷⁾

Because the degree of PQ is m + n-2 and $p-1 \ge m + n-2$ for each $\xi_i = e^{2\pi i j/p}$, $i \in \{0, 1, \dots, p-1\}$ of the p^{th} roots of unity we calculate

$$(PQ)(\xi_i) = P(\xi_i) \cdot Q(\xi_i)$$

and we give the p values, wanted for knowing(identifying) the polynomial PQ with FFT. The cost is p multiplications of numbers

$$P(\xi_i) = P(e^{2\pi i j/p}), \ i \in \{0, 1, \dots, p-1\}.$$
(18)

To go backwards, from values $P(\xi_i) = P(e^{2\pi i j/p})$, $i \in \{0, 1, ..., p-1\}$ to coefficients of the polynomial *PQ*, we use the *Inverse Fourier Transform* see Theorem 2 and then we can recover the coefficient sequence $\{c_0, c_1, ..., c_{p-1}\}$ by the inverse formulas

$$c_{k} = \frac{1}{p} \sum_{k=0}^{p-1} P(\xi_{i}) e^{-2\pi i k j / p} ,$$

$$k \in \{0, 1, ..., p-1\}.$$
(19)

The cost is obviously equal to the cost of the FFT plus a linear number of conjugations and divisions by p so the cost is

$$O(p \cdot \log_2 p) = O((m + n) \cdot \log_2(m + n)).$$
(20)

From (17), (18) and (20) the coefficients of the polynomial PQ have been created at a total cost of $O((m + n) \cdot \log_2(m + n))$ arithmetic operations.

Theorem 4. Karatsuba [10] Let it be P and Q two polynomials of degree n, if we split each of them into another two polynomials of degree

j = n/2 if *n* is even or j = n+1/2 if *n* is odd adding the coefficient equally with zeros if necessary, for computing the product *PQ* is necessary $K(n) = O(n^{\log_2(3)})$ multiplications.

Table 1. Polynomial multiplication algorithms with the same degree n

Algorithm	
classical	$2n^2$
Karatsuba	$O(n^{\log(3)}) \subset O(n^{1.585})$
FFT	$O(n\log(n)\log\log(n))$

References

- 1. Dongarra, J., Sullivan, F. Top Ten Algorithms, *Computing in Science & Engineering* 2, 1, 2000
- 2. Cooley, J.W. The re-discovery of the Fast Fourier Transform algorithm, *Mikrochimica Acta* 3, pp. 33–45, 1987
- 3. Schonhage, A., Strassen, V., Schnelle Multiplikation großer Zahlen, *Computing* 7, pp. 281–292, 1971
- 4. Cantor, D.G., Kaltofen, E. On fast multiplication of polynomials over arbitrary algebras, *Acta Informatica* 28, 7 (1991), pp. 693-701, 1991
- 5. Mignotte, M.- Introduction to Computational Algebra and Linear Programming, Ed. Univ. Bucuresti, 2000
- Muresan, A.C. Computerised Algebra used to calculate cost and some costs from conversions of p-base system with references of p-adics numbers, U.P.B. Sci. Bull., Series A, Vol. 68, No. 3, 2006
- 7. Knuth, D.E. The Art of Computer programming, vol I-III, second edition, Ed. Addison Wesley, 1981
- 8. Wilf, H.S. Algorithms and Complexity 2000, A.K. Peters Ltd Publishers of Science and Tehnology, 2002
- 9. Cormen, T.H., Leiserson, C.E., Rivest, R.R. Introduction To Algorithms, The MIT Press, McGraw-Hill Book, 1989
- 10. Karatsuba, A., Offman, Y. Multiplication of multidigit numbers on automata, Soviet Physics Doklady 7 (1963), pp. 595–596, 1963

Un studiu comparativ asupra complexității unor algoritmi recursivi

Rezumat

Scopul acestei lucrari, este acela de a oferi un studiu comparativ asupra costurilor unor algoritmi recursivi fundamentali. Prezentam aici "Fast Fourier Transform", metoda "Karatsuba" si de asemenea o metoda pentru evaluarea polinoamelor folosind costul lui \mathbf{x}^{n} si "formula lui Stirling"