
BULETINUL
Universităţii Petrol – Gaze din Ploieşti

Vol. LX
No. 2/2008 35-42 Seria

Matematică - Informatică - Fizică

nx

(log())O n n

A Comparative Study About the Complexity
of Some Recursive Algorithms

Alexe Călin Mureşan

Universitatea Petrol-Gaze din Ploieşti, Bd. Bucureşti 39, Ploieşti, Catedra de Matematică
e-mail: acmuresan@upg-ploiesti.ro

Abstract

The aim of this paper is to offer a comparative study about the costs involved in fundamental recursive
algorithms. We present here the „Fast Fourier Transform”, the „Karatsuba” method and also a method
for evaluating the polynomial using the cost of xn and Stirling formula. nx

Key words: Fast Fourier Transform, Karatsuba method, Stirling formula

Introduction

Remark 1. The algorithm for „ The Fast Fourier Transform” presented in Theorem 1 is one of
the 10 algorithms with the greatest influence on the development and practice of software and
engineering in the 20th century, see [1], [2], [3]. In [4] the authors generalized the above result.
In this paper we present „ The Fast Fourier Transform” for evaluating and interpolating the
polynomials.

The complexities of this problem is or and not as
we can see in the naive method. Also we can compute the polynomials into a fixed point using
the computation for , where we use the writing for n in 2-base sistem, see [5], [6].
Evaluating the complexities problem, we can find using the „Stirling formula” also the cost

. Then we use „ The Fast Fourier Transform” and the „Karatsuba” method for
seeing and comparing the complexities costs for multypling the polynomials.

(log())O n n (log() log log())O n n n 2()O n

Definition 1. For a given function g(x), we denote by O(g(x)) the set of functions: :g R R→ ,
O (g (x)) ={f(x) / and there exists positive constants c and :f R R→ 0x R∈ such that
0 f(x) for all x ≤ ()c g x≤ ⋅ 0x≥ }. In this case for every f(x) we denote: O(g(x))=f(x).

Definition 2. For a given function g(x), we denote by Θ(g(x)) the set of functions:
Θ(g(x))={ f(x) / and there are the constants , , and

:g R R→ ,
:f R R→ 1 0c > 2 0c > 0x R∈ so that

for all x > x0 then it is true that () ()1 ()c g x f x c g x< < 2 }. In this case for every f(x) we
denote: Θ(g(x))=f(x).

36 Alexe Călin Mureşan

Definition 3. We consider that f(x) ~ g(x) if f(x)= Θ(g(x)) and

()lim 1.
()x

f x
g x→∞

=

Proposition 1. a)
() 11

!
++⎛ ⎞ ≤ ≤⎜ ⎟

⎝ ⎠

nn

n

nn n
e e

, b) Stirling’s formula: x! ~ 2
xx x

e
π⎛ ⎞

⎜ ⎟
⎝ ⎠

.

See [7], [8] or [9] to References.
 Proposition 2. The Complexity of Divide-and-Conquer algorithms

The recursively algorithms typically follow a divide-and-conquer paradigm for solving a
computational problem which involves three levels of the recursion:

A recurrence for the running time of a divide-and-conquer algorithm, T(n) on a problem of size

n is: ()
()
() () ()

1 if , is given
T

/ if .

n k k R
n

aT n b D n C n n k

θ⎧ ≤ ∈⎪= ⎨
+ + >⎪⎩

Where we divide the problem into ‘a’ subproblems, each of them being ‘1/b’ the rise size of
the original and we denote by: D(n) the time to divide the problem into subproblems, Ө(1) if

, k is a given real constant, the time for conquer a subproblem and C(n) the time to
combine the solutions to the subproblems.
n k≤

Proof. It is based on three steps of the paradigm. If the problem size is small enough, say
 for some constant k, the simplest solution takes constant time, which we will write as

Ө(1). Otherwise, we follow the paradigm and obtain the result.
n k≤

The Fast Fourier Transform

Definition 4

a) The Fourier transform is a method of converting from one representation of a polynomial,
by the sequence of coefficients of the polynomial, to another where the representations are the
sequence of values of polynomial at a certain set of points.

b) For a polynomial with the degree n-1 if we take the sequence of values of that polynomial in
the nth roots of unity we denote the previous method Fast Fourier Transform, FFT.

Theorem 1. For evaluating using FFT 2 -1
0 1 2 -1() · · · []n

nP x a a x a x a x C x= + + + + ∈
we need O(n) multiplications of complex numbers. 2log n

Proof. The polynomial is known as a 2 -1
0 1 2 -1() ··· []n

nP x a a x a x a x C x= + + + + ∈
sequence of n complex numbers of his coefficients: . 0 1 -1, ,..., na a a

We can extend with additional 0’s the length of the array until it becomes a power of 2,
0 1 -1, ,..., ,0,0...0na a a and then the FFT procedure can be considered for a polynomial with

degree n a power of 2. We suppose now, without losing the generality, that . * 2 ,sn s= ∈ N

We compute the polynomial values at the nth roots of unity:

 { }2 / , 0, 1, ... -1 where (0,1)ij n
i e i n jπξ = ∈ = C∈ (1)

We find the Fourier transform of the given sequence to be the sequence:

 A Comparative Study About the Complexity of Some Recursive Algorithms 37

 (2) () { }
1 -1

2 /

0 0
, 0, 1, ... -1 .

n n
k ikj n

i k i k
k k

P a a e i nπξ ξ
−

= =

= = ∈∑ ∑

Then the values of P, a polynomial of degree 2s -1, at the (2s)th roots of unity are:

-1

2 / 2

0

() ,
s

n
ikj

i k
k

P a e πξ
=

= ∑ { }0, 1,..., 2 1 .∈ −si (3)

We divide the previous sum into two sums, containing respectively the terms, where k =2m and
those where k = 2m + 1 for natural 1{0, 1,...,2 1}sm −∈ − . Then, for each

{ } 0, 1,...,2 1si ∈ − we can write:

()
1 1

1 1
1 1 1

2 1 2 1
2 2 / 2 2 (2 1) / 2

2 2 1
0 0

2 1 2 1
2 / 2 / 2 2 / 2

2 2 1
0 0

() , (4)

() (5)

s s
s s

s s
s s s

ij m ij m
i m m

m m

imj ij imj
i m m

m m

P a e a e

P a e e a e

π π

π π π

ξ

ξ

− −

− −
− − −

− −
+

+
= =

− −

+
= =

= +

= +

∑ ∑

∑ ∑

() iP ξWe want to compute where { }2 / , 0, 1,..., 2 1ij n s
i e iπξ = ∈ − , that means for 2s

values.

The first sum of the sums that appear in the previous equality is a Fourier transform of the
array , and the second sum is a Fourier transform of 0 2 4 2 -2

, , ..., sa a a a 1 3 5 2 -1
, , ..., sa a a a ; these

sums are defined for only values , that means for1 2s− { }10, 1,...,2 1sm −∈ −

For solving the FFT problem we use the previous recursive relation into a recursive program.

Let

1

1
2 1

2 / 2
2

0
 ()

s
simj

m
m

g i a e π
−

−
−

=

= ∑ (6)

denote the first sum. Then g(i) is a periodic function of i, of period 2s-1, for all integers i,

because

 (7) () ()
1 1

1 1 1
2 1 2 12 2 / 21 2 / 2

2 2
0 0

2 (
s s

s s smj is imj mj
m m

m m
g i a e a e e g i

π π π
− −

− − −
− −⎡ ⎤+− ⎣ ⎦

= =

+ = = =∑ ∑ 2)

Now for computing g(i), { }0, 1,...,2 1si ∈ − 1 first we compute g(i), 10 2si −≤ ≤ − and for

some i so that we can get that value being equally to g(i mod 2s-1). 12 2s i− ≤ ≤ -1 s

The Fast Fourier Transform algorithm in recursive form, where n is supposing to be
 2sn = and using the type complex array to denote an array of complex numbers from relation

(1) and (2) have the next form.

38 Alexe Călin Mureşan

{Be it and 0 1 -1, ,..., na a a 2sn = , we denote () ()iP f iξ = }

function f (2sn = : integer; : complex array): complex array; 0 1 2 -1
, ,..., sa a a

if s = 0 then f[0] := 0a

 else array1 := ; 0 2 4 2 -2
{ , , ..., }sa a a a

 array2 := { 1 3 5 2 -1
, , ..., sa a a a };

 := f(
12 -1

0 1 2{ , , ..., }
s

c c c c
−

12s− , array1);

 := f(
12 -1

0 1 2{ , , ..., }
s

d d d d
−

12s− , array2);

 for i := 0 to 2 do 1s −

 t :=
1/2sieπ −

,

 f[i] := , 1 1mod 2 mod 2 s si ic t d− −+ ⋅

End {f}.

We study now the complexity of FFT. Let denote the number of multiplications of () T k
complex numbers that will be done, for the worst-case running time, if we call FFT on an array
whose length is 2k. If k=0, the array is formed by and T(0)=0. The procedure will be 0a
continued until we follow s= log2 n steps.

Divide: The divide step just splits the middle of the array with length 2k, the step takes constant
time. Thus, D(k) = T(1).

Conquer: We recursively solve two subproblems, each of size 2k-1, which contributes

T (k) = to the running time because the call to f(2 (-1)T k⋅ 12k− , array1); costs (- 1)T k

multiplications as does the call to f(12k− ,array2).

Combine: In the merge procedure we have:

The cycle ‘for i := 0 to n’ loop requires n= more multiplications. Hence C(k) = 2 . 2k k

When we add the functions D(k) and C(k) for the FFT “conquer” step gives the recurrence for
the worst-case running time T(k) of FFT:

 ()
(0) 0 if 0,

() 2 (-1) 2 , if 0.k

T k
T k

T k T k k

= =⎧⎪= ⎨
= + ≥⎪⎩

 (8)

If we change variables by writing T(k) = 2k tk, then we find that tk = tk-1 + 1, which, together
with t0 = 0, implies that tk = k for all k ≥ 0, and therefore that T(k) = k 2k.

Now k become s= log2 n then T(s) = n lo is the cost of FFT for the worst-case running 2g n
time. Then O(n), running time for large enough inputs, is the cost of FFT. 2log n

 A Comparative Study About the Complexity of Some Recursive Algorithms 39

Theorem 2. FFT for Interpolating the Polynomial, or the Inverse Fourier Transform.

For if we have the given values2 -1
0 1 2 -1() ··· []n

nP x a a x a x a x C x= + + + + ∈ ()iP ξ at

the nth roots of unity { }2 / , 0, 1, ... -1i n
i e i nπξ = ∈ , then we can recover the coefficient

sequence to in 0 1 1{ , ,..., }na a a − ()2logO n n⋅ multiplications of complex numbers.

Proof. We know from the last Theorem that if we have a given sequence with 0 1 1{ , ,..., }na a a −
the coefficients of P then the Fourier transform of the sequence is:

 (9)
1

2 /

0

() , {0,1,..., 1}.
n

ikj n
i k

k

P a e i nπξ
−

−

=

= ∈ −∑

Conversely, if we have the given values ()jP ξ , {0,1,..., 1}i n∈ − then we can recover the

coefficient sequence by the inverse formulas: 0 1 1{ , ,..., }na a a −

-1

-2 /

0

1 ()
n

ikj n
k i

k

a P e
n

πξ

=

= ∑ , {0,1,..., 1}.i n∈ − (10)

The cost is obviously equal to the cost of the FFT plus a linear number of conjugations and

divisions by n so the cost is ()2logO n n⋅ .

The Cost for Computing nx and Evaluating the Polynomials
with Stirling Formula

Definition 5. The cost of an algorithm that calculates is given by the number of the
multiplications effectuated until we obtain the result; then its cost will be C().

nx
nx

Proposition 3. We can find out where ’n’ has a representation in the 2-base system with
the cost C() where and C() =

nx
nx 2 2lo g () 2 log≤ ≤nn C x n nx ()2log nθ .

We can see [5] and [6].

Proposition 4. The cost) for Evaluating the Polynomial (())C P x

 is computed using only 2 -1
0 1 2 -1() ··· []= + + + + ∈n

nP x a a x a x a x R x 2(log)O n n
multiplications of complex numbers.

Proof: We consider the writing cost for Evaluating the Polynomial. represented by the number
of multiplications and then: () () () (2 2 2(()) lg lg (1) lg 2 lg 1= + − + + +KC P x O n O n O O)2

2

,

 where 2 1 2 1(()) lg lg (1) lg 1−= + − + +Kn nC P x a n a n a na ∈R .

Be it

{1,2,...,] {1,2,...,]
min ; max

∈ ∈
= =i ii n i n

a c a C (11)

 Then:

40 Alexe Călin Mureşan

 2 2 2 2
1 1

lg () lg lg (!) () lg (!)
n n

i i

c i C x C i c n C x C n
= =

⋅ ≤ ≤ ⇔ ⋅ ≤ ≤ ⋅∑ ∑ ⇔

 ()2() log (!)C x O n= . (12)

By Proposition 1 we have:

 ! ~ 2
nnn n

e
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 or
() 11

!
nn

n

nn n
e e

++⎛ ⎞ ≤ ≤⎜ ⎟
⎝ ⎠

. (13)

Then

 () (2 2 2 2
1 1log (!) log 1 log log 1

nn nn n n
e e

⎛ ⎞+ +⎛ ⎞ ⎛ ⎞≤ ⎜ ⋅ + ⎟ = + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
)n (14)

and

 () () ()0 2 20 so that log (!) log , .n N c n c n n n∃ ∈ ∃ > ≤ ⋅ ∀ ≥ 0 (15)

Now, because then ()2() log (!) ,C x O n=

 ()2() log ()=C x O n n . (16)

Multiplication of Polynomials

Theorem 3. For two complex polynomials P and Q with degree m-1 and n-1 the
coefficients of product PQ can be given using the FFT in 2(() log ())O m n m n+ ⋅ +
arithmetic operations.

Proof: The degree of PQ is m + n-2. Let be ()2log 2 1s m n= + − +⎡ ⎤⎣ ⎦ , then 1 2sp − =

is the smallest integer that is a power of 2 and 1 p m n 2− ≥ + − .

The given polynomials to the degrees m and n positive natural numbers, can be -1 -1,n ma b ≠ 0
written:

 , 2 -1 -1
0 1 2 -1() · · · 0 ... 0 []n n p

nP x a a x a x a x x x C x= + + + + + + + ∈
2 -1 -1

0 1 2 -1() · · · 0 ... 0 []m m p
mQ x b b x b x b x x x C x= + + + + + + + ∈ ,

The array of coefficients of P and the array of coefficients of Q are considered at the same
length p . Now we compute the FFT at the same 2 / , {0,1,... 1}ij p

i e i pπξ = ∈ − , pth roots of
unity for the polynomials P and Q. From Theorem 1 the cost of this computation is

 (17) ()2 2log (() log ()).O p p O m n m n⋅ = + ⋅ +

Because the degree of PQ is m + n-2 and 1 2p m n− ≥ + − for each
2 / , {0,1,... 1}ij p

i e i pπξ = ∈ − of the pth roots of unity we calculate

 A Comparative Study About the Complexity of Some Recursive Algorithms 41

 ()() () ()i iPQ P Q iξ ξ ξ= ⋅

and we give the p values, wanted for knowing(identifying) the polynomial PQ with FFT.

 The cost is p multiplications of numbers

 ()2 /() , {0,1,... 1}.ij p
iP P e i pπξ = ∈ − (18)

To go backwards, from values ()2 /() , {0,1,... 1}ij p
iP P e i pπξ = ∈ − to coefficients of the

polynomial PQ, we use the Inverse Fourier Transform see Theorem 2 and then we can recover
the coefficient sequence 0 1 1{ , ,..., }pc c c − by the inverse formulas

-1

-2 /

0

1 ()
p

ikj p
k i

k

c P e
p

πξ

=

= ∑ ,

 { }0,1,..., 1k p∈ − . (19)

The cost is obviously equal to the cost of the FFT plus a linear number of conjugations and
divisions by p so the cost is

 (20) ()2 2log (() log ()).O p p O m n m n⋅ = + ⋅ +

From (17), (18) and (20) the coefficients of the polynomial PQ have been created at a total cost
of arithmetic operations. 2(() log ())O m n m n+ ⋅ +

Theorem 4. Karatsuba [10] Let it be P and Q two polynomials of degree n, if we split each
of them into another two polynomials of degree

 adding the coefficient equally with

zeros if necessary, for computing the product PQ is necessary

/ 2 if is even or 1 / 2 if is oddj n n j n n= = +
()2log 3() ()K n O n=

multiplications.
Table 1. Polynomial multiplication algorithms with the same degree n

Algorithm

classical 22n

Karatsuba ()log 3 1.585() (O n O n⊂)

FFT () ()()log log logO n n n

42 Alexe Călin Mureşan

References

1. D o n g a r r a , J . , S u l l i v a n , F . - Top Ten Algorithms, Computing in Science & Engineering
2, 1, 2000

2. C o o l e y , J . W . - The re-discovery of the Fast Fourier Transform algorithm, Mikrochimica Acta
3, pp. 33–45, 1987

3. S c h o n h a g e , A . , S t r a s s e n , V . , S c h n e l l e - Multiplikation großer Zahlen, Computing
7, pp. 281–292, 1971

4. C a n t o r , D . G . , K a l t o f e n , E . - On fast multiplication of polynomials over arbitrary
algebras, Acta Informatica 28, 7 (1991), pp. 693–701, 1991

5. M i g n o t t e , M . - Introduction to Computational Algebra and Linear Programming, Ed. Univ.
Bucuresti, 2000

6. M u r e s a n , A . C . - Computerised Algebra used to calculate cost and some costs from
conversions of p-base system with references of p-adics numbers, U.P.B. Sci. Bull., Series A, Vol.
68, No. 3, 2006

7. K n u t h , D . E . - The Art of Computer programming, vol I-III, second edition, Ed. Addison
Wesley, 1981

8. W i l f , H . S . - Algorithms and Complexity 2000, A.K. Peters Ltd Publishers of Science and
Tehnology, 2002

9. C o r m e n , T . H . , L e i s e r s o n , C . E . , R i v e s t , R . R . - Introduction To Algorithms, The
MIT Press, McGraw-Hill Book, 1989

10. K a r a t s u b a , A . , O f f m a n , Y . - Multiplication of multidigit numbers on automata, Soviet
Physics Doklady 7 (1963), pp. 595–596, 1963

 Un studiu comparativ asupra complexităţii
unor algoritmi recursivi

Rezumat

Scopul acestei lucrari, este acela de a oferi un studiu comparativ asupra costurilor unor algoritmi
recursivi fundamentali. Prezentam aici „Fast Fourier Transform”, metoda „Karatsuba” si de asemenea
o metoda pentru evaluarea polinoamelor folosind costul lui si „formula lui Stirling” nx

