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Abstract 

The aim of this paper is  to offer a comparative study about the costs involved in fundamental recursive 
algorithms. We present here the  „Fast Fourier Transform”, the „Karatsuba” method and also a method 
for evaluating the polynomial using the cost of xn and Stirling formula. nx
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Introduction 

Remark  1. The algorithm for „ The Fast Fourier Transform” presented  in Theorem 1 is one of 
the 10 algorithms with the greatest influence on the development and practice of software and 
engineering in the 20th century, see [1], [2], [3]. In [4] the authors generalized the above result. 
In this paper we present „ The Fast Fourier Transform” for evaluating and interpolating the 
polynomials.  

The complexities of this problem is  or and not  as 
we can  see in the naive method.  Also we can compute the polynomials into a fixed point using 
the computation for , where we  use the writing for n  in 2-base sistem, see [5], [6]. 
Evaluating the complexities problem, we can find using the „Stirling formula” also the cost 

. Then we use „ The Fast Fourier Transform” and the „Karatsuba”  method for 
seeing and comparing the complexities costs for multypling the polynomials.          

( log( ))O n n ( log( ) log log( ))O n n n 2( )O n

Definition 1. For a given function g(x),  we denote by O(g(x))  the set of  functions: :g R R→ ,
O (g (x)) ={f(x) /  and there exists positive constants  c  and  :f R R→ 0x R∈  such that 
0 f(x)  for all x ≤ ( )c g x≤ ⋅ 0x≥ }.  In this case for every f(x) we denote:  O(g(x))=f(x).         

Definition 2. For a given function g(x),  we denote by Θ(g(x))  the set of functions: 
Θ(g(x))={ f(x) /    and there are the constants , , and 

:g R R→ ,
:f R R→ 1 0c > 2 0c > 0x R∈  so that 

for all x > x0   then  it is true that  ( ) ( )1  ( )c g x f x c g x< < 2 }. In this case for every f(x) we 
denote:  Θ(g(x))=f(x).   
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Definition 3.  We consider that  f(x) ~ g(x)  if  f(x)= Θ(g(x)) and 
 

( )lim  1.
( )x

f x
g x→∞

=  

Proposition 1.  a) 
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, b) Stirling’s formula:        x! ~ 2
xx x

e
π⎛ ⎞

⎜ ⎟
⎝ ⎠

. 

See [7], [8] or [9] to References.
 Proposition 2. The Complexity of  Divide-and-Conquer algorithms 

The recursively algorithms typically follow a divide-and-conquer paradigm for solving a 
computational problem which involves three levels of the recursion: 

A recurrence for the running time of a divide-and-conquer algorithm, T(n) on a problem of size 

n is:                               ( )
( )
( ) ( ) ( )

1     if   ,  is given
T          

/    if   .

n k k R
n

aT n b D n C n n k

θ⎧ ≤ ∈⎪= ⎨
+ + >⎪⎩

 

Where we divide the problem into ‘a’  subproblems, each of them being  ‘1/b’  the rise size of 
the original and we denote by:  D(n) the time to divide the problem into subproblems, Ө(1)  if   

, k is a given real constant, the time for conquer a subproblem and C(n) the time to 
combine the solutions to the subproblems. 
n k≤

Proof.  It is based on three steps of the paradigm. If the problem size is small enough, say 
 for some constant k, the simplest solution takes constant time, which we will write as 

Ө(1). Otherwise, we follow the paradigm and obtain the result. 
n k≤

The Fast Fourier Transform              

Definition 4 

a)  The  Fourier transform is a method of converting from one representation of a polynomial, 
by the sequence of coefficients of the polynomial, to another where the representations are the 
sequence of values of polynomial at a certain set of points.  

b)  For a polynomial with the degree n-1 if we take the sequence of values of that polynomial in 
the nth roots of unity we denote the previous method Fast Fourier Transform,  FFT. 

Theorem 1.    For  evaluating  using FFT  2 -1
0 1 2 -1( )       · · ·  [ ]n

nP x a a x a x a x C x= + + + + ∈
we need  O(n ) multiplications of complex numbers.  2log n

Proof.  The polynomial   is known as a 2 -1
0 1 2 -1( )        ···  [ ]n

nP x a a x a x a x C x= + + + + ∈
sequence of  n  complex  numbers of  his coefficients: . 0 1 -1, ,..., na a a

We can extend with additional 0’s the length of the array until it becomes a power of  2, 
0 1 -1, ,..., ,0,0...0na a a  and then the FFT  procedure can be considered for a polynomial with 

degree  n  a power of  2. We suppose now, without losing the generality, that . *  2 ,sn s= ∈ N

We compute the polynomial values at the  nth   roots of unity: 

 { }2 /  , 0,  1,  ... -1 where (0,1)ij n
i e i n jπξ = ∈ = C∈  (1) 

We find the Fourier transform of the given sequence to be the sequence: 
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  (2) ( ) { }
1 -1

2 /

0 0
,             0,  1,  ... -1 .

n n
k ikj n

i k i k
k k

P a a e i nπξ ξ
−

= =

= = ∈∑ ∑

Then the values of   P, a polynomial of degree  2s -1, at the  (2s)th  roots of unity are: 

 
-1

2 / 2

0

( )  ,
s

n
ikj

i k
k

P a e πξ
=

=   ∑ { }0,  1,..., 2 1 .∈ −si  (3) 

We divide the previous sum into two sums, containing respectively the terms, where k =2m  and 
those where  k = 2m + 1 for natural 1{0,  1,...,2 1}sm −∈ − . Then, for each  

{ } 0,  1,...,2 1si ∈ −  we can write: 

           

( )
1 1

1 1
1 1 1

2 1 2 1
2 2 / 2 2 (2 1) / 2

2 2 1
0 0

2 1 2 1
2 / 2 / 2 2 / 2

2 2 1
0 0

( ) , (4)
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= =
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( ) iP ξWe want to compute  where  { }2 / ,  0,  1,..., 2 1ij n s
i e iπξ = ∈ − , that means for 2s  

values. 

The first sum of the sums that appear in the previous equality is a Fourier transform of the 
array , and the second sum is a Fourier transform of 0 2 4 2 -2

, , ..., sa a a a 1 3 5 2 -1
, , ..., sa a a a ; these 

sums are defined for only  values , that means for1  2s− { }10,  1,...,2 1sm −∈ −  

For solving the  FFT   problem we use the previous recursive relation into a recursive program. 

Let  

 
1

1
2 1

2 / 2
2

0
 ( )

s
simj

m
m

g i a e π
−

−
−

=

= ∑  (6) 

denote the first sum. Then  g(i)  is a periodic function of  i, of period 2s-1, for all integers  i,  

because  

  (7) ( ) ( )
1 1

1 1 1
2 1 2 12 2 / 21 2 / 2

2 2
0 0

2 (
s s

s s smj is imj mj
m m

m m
g i a e a e e g i

π π π
− −

− − −
− −⎡ ⎤+− ⎣ ⎦

= =

+ = = =∑ ∑ 2 )

Now  for computing  g(i), { }0,  1,...,2 1si ∈ − 1 first we compute g(i), 10 2si −≤ ≤ −  and for 

some  i  so that   we can get that value  being equally to  g(i mod 2s-1). 12 2s i− ≤ ≤ -1 s

The Fast Fourier Transform algorithm in recursive form, where n  is supposing to be 
 2sn = and using the type complex array to denote an array of complex numbers from relation  

(1)  and (2) have the  next form. 
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{Be it  and 0 1 -1, ,..., na a a  2sn = ,  we denote ( ) ( )iP f iξ = } 

function f (  2sn = : integer;  : complex array): complex array;  0 1 2 -1
, ,..., sa a a

if  s = 0   then     f[0] :=                  0a

         else  array1 := ;  0 2 4 2 -2
{ , , ..., }sa a a a

               array2 := { 1 3 5 2 -1
, , ..., sa a a a }; 

               := f(
12 -1

0 1 2{ , , ..., }
s

c c c c
−

12s− , array1); 

             := f(
12 -1

0 1 2{ , , ..., }
s

d d d d
−

12s− , array2); 

                for i := 0   to  2  do 1s −

                     t := 
1/2sieπ −

, 

                     f[i] := , 1 1mod 2 mod 2 s si ic t d− −+ ⋅

End {f}. 

 

We study now the complexity of FFT.  Let denote the number of multiplications of ( ) T k
complex numbers that will be done, for the worst-case running time, if we call FFT on an array 
whose length is 2k.  If  k=0, the array is formed by  and   T(0)=0. The procedure will be 0a
continued until we follow  s= log2 n   steps. 

Divide: The divide step just splits the middle of the array with length 2k, the step takes constant 
time. Thus,  D(k) = T(1). 

Conquer: We recursively solve two subproblems, each of size 2k-1, which contributes  

T (k) =  to the running time because the call to f(2 ( -1)T k⋅ 12k− , array1); costs  (  -  1)T k

multiplications as does the call to  f( 12k− ,array2). 

Combine: In the merge procedure we have: 

The cycle ‘for i := 0 to n’  loop requires  n=   more multiplications. Hence C(k) = 2 . 2k k

When we add the functions D(k) and C(k) for the FFT   “conquer”  step gives the recurrence for 
the worst-case running time T(k) of  FFT:                              

 ( )
(0) 0 if  0,

( )  2 ( -1) 2 ,   if   0.k

T k
T k

T k T k k

= =⎧⎪= ⎨
= + ≥⎪⎩

 (8) 

If we change variables by writing  T(k)  = 2k tk, then we find that tk = tk-1 + 1, which,  together 
with t0 = 0, implies that  tk = k  for all  k ≥ 0, and therefore that T(k) = k 2k. 

Now k  become s= log2 n   then  T(s) = n lo   is the cost of  FFT  for the worst-case running 2g n
time. Then O(n ),  running time for large enough inputs, is the cost of  FFT. 2log n
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Theorem 2.   FFT  for  Interpolating the Polynomial, or the Inverse Fourier Transform.    

For  if we have the given values2 -1
0 1 2 -1( )        ···  [ ]n

nP x a a x a x a x C x= + + + + ∈ ( )iP ξ  at 

the nth roots of unity  { }2 /  , 0,  1,  ... -1i n
i e i nπξ = ∈ , then we can  recover the coefficient 

sequence  to  in 0 1 1{ , ,...,  }na a a − ( )2logO n n⋅  multiplications of complex numbers.  

Proof. We know from the last Theorem that if we have a given sequence  with 0 1 1{ , ,...,  }na a a −
the coefficients of  P  then the Fourier transform of the sequence is: 

  (9) 
1

2 /

0

( ) , {0,1,..., 1}. 
n

ikj n
i k

k

P a e i nπξ
−

−

=

= ∈ −∑

Conversely, if we have the given values ( )jP ξ ,  {0,1,..., 1}i n∈ −  then we can recover the 

coefficient sequence  by the inverse formulas: 0 1 1{ , ,...,  }na a a −

 
-1

-2 /

0

1  ( )
n

ikj n
k i

k

a P e
n

πξ  

=

= ∑ , {0,1,..., 1}.i n∈ −  (10) 

The cost is obviously equal to the cost of the  FFT  plus a linear number of conjugations and 

divisions by  n  so the cost is  ( )2logO n n⋅ . 

The Cost for Computing  nx  and Evaluating the Polynomials                     
with Stirling Formula 

Definition 5. The cost of an algorithm that calculates  is given by the number of the 
multiplications effectuated until we obtain the result; then its cost will be C( ). 

nx
nx

Proposition 3. We can find out   where ’n’ has a representation in the 2-base system with 
the cost  C( ) where  and C( ) = 

nx
nx 2 2lo g ( ) 2 log≤ ≤nn C x n nx ( )2log nθ . 

We can see  [5] and  [6]. 

Proposition 4. The cost  )  for  Evaluating the Polynomial ( ( ))C P x

  is computed using only   2 -1
0 1 2 -1( )       ···  [ ]= + + + + ∈n

nP x a a x a x a x R x 2( log )O n n
multiplications of complex numbers.  

Proof:  We consider the writing cost for  Evaluating the Polynomial. represented by the number 
of multiplications and then: ( ) ( ) ( ) (2 2 2( ( )) lg lg ( 1) lg 2 lg 1= + − + + +KC P x O n O n O O )2

2

, 

   where 2 1 2 1( ( )) lg lg ( 1) lg 1−= + − + +Kn nC P x a n a n a na ∈R . 

Be it  

{1,2,..., ] {1,2,..., ]
min ; max

∈ ∈
= =i ii n i n

a c a C  (11)  

 Then: 
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i i

c i C x C i c n C x C n
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 ( )2( )  log ( !)C x O n= . (12) 

By  Proposition 1  we have:   
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( ) 11
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e e
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.  (13) 

Then  

 ( ) (2 2 2 2
1 1log ( !) log 1 log log 1

nn nn n n
e e

⎛ ⎞+ +⎛ ⎞ ⎛ ⎞≤ ⎜ ⋅ + ⎟ = + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
)n  (14) 

and  

 ( ) ( ) ( )0 2 20 so that log ( !) log , .n N c n c n n n∃ ∈ ∃ > ≤ ⋅ ∀ ≥ 0  (15) 

Now, because  then ( )2( )  log ( !) ,C x O n=

 ( )2( )  log ( )=C x O n n . (16) 

Multiplication of  Polynomials  

Theorem 3. For two complex polynomials  P  and  Q  with degree  m-1  and  n-1 the 
coefficients of  product PQ  can be given using the FFT  in  2((   ) log (   ))O m n m n+ ⋅ +  
arithmetic operations. 

Proof:  The degree of  PQ  is  m + n-2. Let be ( )2log 2  1s m n= + − +⎡ ⎤⎣ ⎦ , then  1 2sp − =   

is the smallest integer that is a power of  2  and  1   p m n 2− ≥ + − . 

The given polynomials to the degrees  m and  n positive natural numbers,   can be -1 -1,n ma b ≠ 0
written: 

 , 2 -1 -1
0 1 2 -1( )        · · ·  0 ... 0 [ ]n n p

nP x a a x a x a x x x C x= + + + + + + + ∈
2 -1 -1

0 1 2 -1( )       · · · 0 ... 0 [ ]m m p
mQ x b b x b x b x x x C x= + + + + + + + ∈ ,  

The array of coefficients of  P and the array of coefficients of Q  are considered at the same 
length p . Now we compute the FFT  at the same 2 / , {0,1,... 1}ij p

i e i pπξ = ∈ − ,  pth  roots of 
unity for the polynomials P and Q. From Theorem 1 the cost of this computation is   

  (17) ( )2 2log ((   ) log (   )).O p p O m n m n⋅ = + ⋅ +

Because the degree of  PQ  is  m + n-2 and 1   2p m n− ≥ + −  for each 
2 / , {0,1,... 1}ij p

i e i pπξ = ∈ −  of  the pth  roots of unity we calculate      
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 ( )( ) ( ) ( )i iPQ P Q iξ ξ ξ= ⋅  

and we give the  p  values, wanted for knowing(identifying) the polynomial PQ with FFT. 

 The cost is  p  multiplications of  numbers  

 ( )2 /( ) , {0,1,... 1}.ij p
iP P e i pπξ = ∈ −  (18) 

To go backwards, from values ( )2 /( ) , {0,1,... 1}ij p
iP P e i pπξ = ∈ − to coefficients of the 

polynomial PQ,  we use the Inverse Fourier Transform  see Theorem 2 and then we can recover 
the coefficient sequence 0 1 1{ , ,...,  }pc c c −  by the inverse formulas 

 
-1

-2 /

0

1 ( )
p

ikj p
k i

k

c P e
p

πξ  

=

= ∑ , 

 { }0,1,..., 1k p∈ − .  (19) 

The cost is obviously equal to the cost of the  FFT  plus a linear number of conjugations and 
divisions by  p so the cost is   

  (20) ( )2 2log ((   ) log (   )).O p p O m n m n⋅ = + ⋅ +

From (17), (18) and (20) the coefficients of the polynomial PQ  have been created at a total cost 
of   arithmetic operations.  2((   ) log (   ))O m n m n+ ⋅ +

Theorem 4. Karatsuba [10] Let it be  P and Q  two polynomials of degree n,  if we split each 
of them into another two polynomials of degree 

  adding the coefficient equally with 

zeros  if necessary, for computing the product  PQ is necessary 

/ 2 if is even or 1 / 2 if is oddj n n j n n= = +
( )2log 3( ) ( )K n O n=  

multiplications.  
Table 1. Polynomial multiplication algorithms with the same degree n 

Algorithm   

classical  22n  

Karatsuba  ( )log 3 1.585( ) (O n O n⊂ )  

FFT  ( ) ( )( )log log logO n n n  
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        Un studiu comparativ asupra  complexităţii                           
unor algoritmi recursivi 

Rezumat 

Scopul acestei lucrari, este acela de a oferi un studiu comparativ asupra costurilor unor algoritmi 
recursivi fundamentali. Prezentam aici „Fast Fourier Transform”, metoda  „Karatsuba” si de asemenea 
o metoda pentru evaluarea polinoamelor folosind costul lui si „formula lui  Stirling” nx


